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PHENOMENOLOGICAL MATHEMATICAL MODELS
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Abstract
Phenomenological mathematical model of laser-induced thrombi growth is developed on the
basis of N.N. Bogolubov’s hierarchy of time scales. The stochastic character of thrombi growth
is revealed in the model by explicit introduction of the probability function. The main foundations
of the model correspond to the basic experimental results concerning thrombus formation
obtained in recent years. The modeling curves permit to achieve qualitative agreement between
model and experimental data. The comparison of the model with other models of thrombus
growth is performed: it is shown that many features of the phenomenon can be described
mainly in terms of physics but not biological terms.

Keywords: mathematical model, microvessels, thrombus growth, platelets, hierarchy of time
scales.

This article is devoted to a problem of the creation of mathematical models of biological
systems. The art of good mathematical modeling relies on (i) a sound understanding and appreciation
of a biological problem; (ii) a successful mathematical representation of the biological phenomena;
(ii1) qualitative analysis of a mathematical model and finding useful solutions; and finally: (iv) a
proper biological interpretation of the mathematical results in terms of insights and predictions
[1]. As declared in [2], mathematical biology is one of the most exciting modern applications of
mathematics. Non-vanishing interest to the problem of mathematical modeling of laser-induced
thrombus growth in mesenteric blood vessels demonstrated in the last decade confirms this statement
[3—7]. Theoretical investigations were stimulated by a set of new experimental results concerning
thrombus formation obtained in recent years [8—11].

These experimental studies demonstrate the complexity of the platelet aggregation process in
vivo in flowing blood, when the majority of platelets tethering to the luminal surface of a developing
thrombus subsequently translocate and detach, with only a small percentage of tethered platelets
forming stationary adhesion contacts at both arterial and venous shear rates. In response to vascular
and tissue trauma, platelets establish adhesive interactions with exposed subendothelial structures.
The adhesion of platelets to the injured vascular wall or to the surface of a growing aggregate is a
principally nonlocal process: a platelet adheres to the surface only if the distance from its center to
the point of fixation is smaller or equal to its size.
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The main tendency revealed in the theoretical publications [12—14] is an attempt to describe
tiny details of the processes mentioned above and other interactions and to create a complete
mathematical model of the phenomenon. This tendency leads to the extreme complexity of
developed models, and either makes the model as a whole useless for a qualitative analysis and
predictions or makes to proceed with significant simplifications resulting in the loss of the initially
introduced details. We will briefly discuss two typical models of this kind offered in [5] and [13].

The mathematical model developed in [13] includes both plasma-phase and membrane-phase
reactions that occur after the exposure in a thin boundary layer shell above the injured surface.
The assumption that all species in this shell are well mixed leads to the possibility to describe all
reactions by means of ordinary differential equations. Three different populations of platelets are
considered in the model: (i) inactivated and free in solution, (ii) activated and attached directly to
the subendothelium, and (iii) activated but not attached directly to it. Special group of assumptions
is devoted to the properties of reactants and to the binding of proteins to surfaces. As a result, the
model contains 59 differential equations with even more numerous set of parameters that determine
the factors entering the equations, and its real value can be estimated only after the calculation or
independent experimental determination of the values of all parameters entering the theory becomes
possible.

The continuous mathematical model of platelet thrombus formation in blood flow developed
in [5] is based on partial differential equations (PDE) and takes into account all basic processes,
such as the transport of platelets along and across the blood flow, their adhesion to the injured part
of a vascular wall and to the surface of growing thrombocyte aggregate, the activation, the emission
of activators, and the aggregation of platelets. The model consists of a system of 10 linked PDE
and involves the so called level set approach (LSA) to tracing the domains interface boundary
motion. It allows finding the distance to the boundary by using the additional differential equation
describing the boundary movement, and thus gives the ability to distribute the surface processes
over the transition zone of a finite length. A network of vessels is described in this model by one-
dimensional flows of Poiseuille type in regular parts with parallel walls and two-dimensional
Navier-Stokes description in the zones of more complicated geometry — bifurcations and clot
formation areas.

The main difficulties in the description of the process of the thrombocyte growth into the
blood flow occurring due to the adhesion of platelets carried by the flow is caused (like in all other
models) by the principal nonlocality of the adhesion and by the necessity to calculate the rate of
this process on the moving boundary of the aggregate. In order to trace the movement of the
aggregate’s boundary in the frame of LSA method the sharp boundary of the domain, where a
jump of physical properties of the medium occurs, is replaced by the transition zone of their
continuous variation. The blood is considered as a one-phase fluid with constant density and
viscosity, neglecting the difference in the densities of erythrocytes and the plasma and non-Newton
properties of blood.

The complexity of the model caused some simplification in the process of numerical
calculations. The results of the numerical calculations were used for a direct comparison with the
results of a classical experimental work [15]. The comparison showed that the mathematical model
[5] is a sufficiently complete model of hemostasis, but it should be clearly stated that the agreement
with the experimental data in [15] can be obtained in the frame of much simpler phenomenological
mathematical models [1, 3].

Despite considerable advantages of the discussed complex mathematical models there are
certain deficiencies that should be remedied. First of all, the number of considered elementary
processes that determine the final picture of thrombus formation is much larger in [13] than in [5].
Even in the cases when the same basic elementary microscopic processes were considered, different
assumptions were involved. For example, the platelets, depending on their state, are divided in
[13] into three groups, and in [5] — into four groups. Qualitative agreement with experimental
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results demonstrated by both models, testifies to a certain independence of this picture from the
details of elementary interactions in the biological system.

The process of thrombus formation is a very complex phenomenon to taking into account the
details which were neglected in the existing models and which can be added by future experimental
investigations. The complexity of the phenomenon also means that all the coefficients entering the
equations are the sums of the contributions of different elementary processes leading to the same
results in the final picture. Thus, the modeling of the phenomenon at present time can be produced
in the frame of the Bogolubov’s hierarchy of time scales, what was done in [3], but in implicit
form: the hierarchy of time scales was taken into account not by the introduction of corresponding
dimensionless parameters, but by the assumption that only the most “slow” process in the
phenomenon must be traced by “dynamical” description, and “quick” processes can be taken into
account in terms of stationary values of their parameters. The complexity of the model can be
reduced to some extent when tracing the time scale hierarchy in explicit way.

The independence of the final picture of the tiny biological details means that all separate
processes occurring in the phenomenon can be divided into “quick” and “slow” ones. This clearly
demonstrates the existence of several stages of the process, so that mathematical models for different
stages of the phenomenon can be different: time dependence of the evolution of slow variables
would not depend on the details of the dynamics of quick variables. In this sense, rather simple
phenomenological mathematical models offered in[1, 3, 16] correspond to a rough time scale, and
consequently, to a smooth and slowly varying in time picture of the phenomenon although it was
not shown in the explicit way. These models turned to be in a good qualitative agreement with
corresponding experimental data [15, 17]. At the same time, certain restrictions for the allowed
values of the entering parameters, peculiar to the models, can and should be removed by a usage of
different mathematical technique on the basis of the same biological and physical considerations.

This paper is devoted to the development of a new phenomenological model of laser-induced
thrombosis on the basis of the analysis of the hierarchy of time scales. The model is developed as
a generalization of the initial Richardson’s approach to the problem [18].

1. PHENOMENOLOGICAL THEORY OF THROMBUS FORMATION

Main directions of the generalization of the Richardson’s phenomenological model are[1, 3]:

1) the dependence of platelet activation time on the distance from the injured vessel wall;

2) the heterogeneity of the platelet distribution in blood flow in the vicinity of the vessel wall;

3) the adequate choice of the phenomenological function describing the dependence of blood
velocity on the thrombus size. A detailed qualitative discussion of these directions can be found in
[1]. Here we will only emphasize that these directions are in the complete agreement with the
known experimental results [8, 11, 19] and with the results of theoretical investigation [5, 13].
Rather different directions of generalization of the Richardson’s phenomenological model will be
followed in this work and their mathematical realization also will be different.

The elaborated analysis of the biological factors and of the corresponding equations presented
in the most detailed for the present time picture of thrombus formation [13] leads to the following
conclusions:

1) different factors form the groups that perform the same influence on the process of thrombus
formation being different only in the sense of their time scale;

2) the process of thrombus growth is the most “slow” process compared with the different
“quick” processes determining the picture under consideration.
As aresult it can be considered that the time evolution of the “slow” process (the rate of thrombus
growth) doesn’t depend on the dynamics of “quick™ processes. It depends only on a set of
dimensionless parameters determined by the ratios of typical time lengths of “quick” and “slow”
processes.
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We start a construction of a new mathematical model of thrombus formation based on the
Bogolubov’s hierarchy of time scales by brief comments concerning experimental curves on Fig. 1
which present the dependence of blood velocity on thrombus size [17].

The concave and the convex parts on the curves corresponding to the experiments with different
animals do not coincide. This testifies to the fact that the mutual relative role of different biological
factors was different in these cases. The similar resulting behavior of the curves means that in the
frame of the phenomenological model it is not necessary to consider those biological factors
separately. The same comments can be made concerning the dots representing the blood velocities
on Fig. 2 [17].

The introduction of a set of dimensionless parameters that rule the process of thrombus growth
can be performed on the basis of a following model of blood flow in a mesenteric vessel.

We will consider a thrombus with a shape shown on the Fig. 3 (the case of more complex
shape can be considered in a similar way changing the rigid model for a soft one) and assume its
length / to be proportional to its radius R: / = C| R, where C, is a dimensionless constant of the unit
order. We will also assume that the activated platelets aggregating to the growing thrombus move
on the distance b from its surface (Fig. 4).

The velocity v of blood flow in the thin layer b according to Richardson can be given by the
expression [18]

v=Tbh. (1)
Gradient of the velocity I' is proportional to the ratio of mean value of the velocity to the linear
size of the cross section of the vessel, i.e. to (R,— R). Mean value of the velocity equals to the ratio

of the blood flow rate Q (volume of blood flowing past a given point per unit time) to the area of
the cross section. Taking into account that b < R, — R we get the following expression for v:

. C,0b
"~ (R,—R+b)R}-R*)’

)

Ry

A

Fig. 3 Fig. 4
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Thus, the time 1,a platelet needs to cover the distance / equals to

I _GR(R,—-R +b)(R; —R*)
V) Ob '
This time is of the same order of magnitude as the activation time ¢,=0.1+0.2 s, what makes

possible the aggregation of the platelet to the growing thrombus. This process has a stochastic
character, so it is necessary to introduce a probability w(tp) of the platelet’s attachment to the

thrombus. The probability w(tp) can be approximated by some smooth function which is close to

3)

where 7 and ¢ . are associated with the

min’® min

unity when 1> Ly and close to zero when <1,
activation time 7, and present another way of introduction its dependence on the distance than
used in [13]. For example, such a function can be defined in terms of the hyperbolic tangent

function:

(e, ) =y 4 (1w + (1=t —1,), @

where w,, corresponds to a small probability for a platelet to be activated before reaching the
growing thrombus and the quantities o and ¢, are defined by the equations:

tmin + tmax 2

, =

0 2 -t

The function w(¢)) turns to be a step function when ¢ = ¢ ..

The rate of change dN/dt of the number of platelets attached to the growing thrombus can be
given by the equation:

Ci{—];] = nn Rbo (R)w(t ,(R))- &)

where 7 is the platelet concentration in the blood. With a help of the Eq. (2) the rate of change
dNJ/dt can be presented in the form:

N _ ¢nRbw L ©)
dt (R,—R+b)(R: -R?)

The flow rate Q in (6) depends on the thrombus size. This dependence can be determined in
the following way. We assume blood to be an incompressible fluid with constant viscosity and
consider a streamline blood flow without turbulence in a tube with a radius R, and a length L.
According to J.L.M. Poiseuille and G.G. Stokes, the dependence of blood velocity on the distance
r from the axis of the tube is given by the equation [20]

U(r)=4%(R§—r2), (7)

where 1 ais blood viscosity and AP is a pressure difference between the ends of the tube. Thus,
for the blood flow rate O we get

TR AP
= . 8
0= ®)
Now the Eq. (7) can be rewritten as
20(R; —17)
=, 9
o)== ©)

Consequently for the dissipated in the tube power due to viscosity W, we get the equation

w, =2thAPb(r)rdr=QAP, (10)
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which with the help of Eq. (8) can be presented in the form

ML .,
- , 11
D TCRgQ ( )

It is convenient to express Eq. (11) in terms of the area of the cross section S, of the tube:

_8&mnlL

= 2. 12

The generalization of Eq.(12) to the case of noncircular form of blood vessel results in the
same expression (12) with the only change of 87 for the dimensionless constant of the same order
of magnitude:

CnlL
W, = =20 (13)
SO
To apply this result to the case under consideration we accept the following model for a blood
vessel with a growing thrombus inside (Fig. 5).

The calculation of the dissipated power in each part of the vessel gives the following result for

the total dissipated power:
C/l, C,l
W = 60 + -7 2 5 14
’ ”[Sé (SO—SYJQ 1
where S,—S is an area of the vessel cross-section at the point of thrombus location and [, =1/, + 1,
is a total length of the vessel part without a thrombus.
The continuity equation is valid for the stationary viscous flow [20], so the power of external
forces providing the movement of blood W, can be given by the following expression
W,=APQ. (15)

The power W, is equal to the dissipated power W,,. This condition leads to the following
equation for the blood flow rate Q:
AP

0= : (16)
Ch, Gl
S; (S,=8)
The set of Egs. (3), (4), (6), and (16) is a closed one, if we take into account the relation
between a number N of platelets in a thrombus and its volume S/

N=n5I, (17)

where 7, is a platelet concentration in a thrombus.

2. INTRODUCTION OF THE DIMENSIONLESS PARAMETERS

Eq. (16) can be written in a different form if we introduce a dimensionless parameter s equal
to the ratio of the areas of cross sections of thrombus and blood vessel s = S/S, and take into
account that the thrombus’s length / is proportional to its radius R:
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C,APS;
0= NG (18)
1+C,
l, ( _S)
Introducing the dimensionless constant k = Cg\/g /1, <<1 we can write Eq. (18) in the
following way:
g _ C,APS, 1 (19)
S, nl, ks
1+ 5
(1-5)
C,APS, . . . .
The constant —l has the dimension of velocity and can be interpreted as a mean
Nt

value of blood flow velocity v, in the absence of thrombus. Then we get the following equation
for Q:
v,
Q —
kf
(1 s)’
Eq. (3) for the time ¢ during which a platelet moves near the growing thrombus with the help
of introduced constants £, s and v, can be brought to the following form:

C3\/S_°\/§(1—\/§+6)(1—s)(1+k—\/§2], 21)
VS (1-5)

where & =b/./S, . The constant factor 7, = C;4/S, / (v,0) in Eq. (21) has the dimension of

time. The quantity T}, is larger than the time a platelet needs to cover the distance R,,. The ratio of
these quantities is of the order R/b. Qualitative estimations can be made on the basis of data
presented in [3]: R, = 30 mkm, v,= 3 mm/s. Assuming C, = 1 we get T, = .15 s what corresponds
to the platelet activation time.

It is convenient to introduce the dimensionless time. The equation for this quantity is obtained
with a help of (21):

(20)

t,=

L =s (=5 +8)(1- s)(1+(k‘/_ ] (22)

)’
The dimensionless quantitiest . =¢ . /T, t, . =t /T ,ud appear to be the parameters of
the phenomenological theory of laser-lnduced thrombus formation. The quantities ¢ > Enin and?_

in the expression (4) for the probability w(¢) should be changed for Ty Tonin X Ty Eq. (6) forthe
rate of change of thrombus size in these new terms gets the form:

AN _ e oS AU e 23)
(=5 +8)(1—5) 14KV
(1-s)
Eq. (17) written in terms of the dimensionless parameter s and t
N =C,nS;*s*"? (24)

permits to transform Eq. (23) for dN/dt into the equation for ds/dt. Finally, we get the following
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closed set of equations for the phenomenological model of laser-induced thrombus formation in
vivo:

d_on W, (5)) 03)
B s 181 - s)(l+( */_)]

1
wt ) =w, +5(1+w0 +(1-w)th((, -1,))),

’cmm +Tmax 2
TO = , A= s
2 Tmax _Tmm
L =s(1=+s +8)(1- s)( (k‘f)]

Comparison with the experimental data requires the knowledge of a mean value of blood

velocity in the vicinity (v )= S Q S of a thrombus. In terms of the introduced dimensionless

0
parameters it can be written in the form:

(o) =—20 . (26)

1—s+k\/;

1-s

It follows from Eq. (26) that (v) is increasing like (1 — s)™!, when dissipation is small, and
tends to zero when s — 1.

The described model contains one parameter 7, with the dimension of time, one parameter v,
with the dimension of velocity, two parameters n and n, with the dimension of concentration, and

the dimensionless parameters C, 3, w,, k, T . The product 7,6 corresponds to the time a

min’® max
platelet needs to cover a distance / equal to the thrombus length. It then follows from the equations
of the model that the ratio of the time of thrombus growth to T}, is of the order n,/n. If we assume
the time of thrombus growth to be equal 200's, and T;, = .15's, we getn,/n = 1300. The concentration
of platelets in blood is of the order n = (150+400)- 10> mm3 and their concentration in blood can
be roughly estimated as n,~ b2 = 0.1+-1 mkm™3. It gives for n,/n the value equal to 250+7000, what
is in a reasonable correspondence with the value presented above.

The results of numerical calculations on the basis of the equations (25) are shown on Fig. 6

(v(?)) and Fig. 7 (s () and v (¢)) for the following values of the dimensionless parameters: k= 0,05.
6=0.05,w,=0.1,7 . =0.17,1

comparison with the experimental data on Fig. 1 and Fig. 2 demands the coinciding scales what

= 0.22. The constants v, and Cn/n, were put equal to 1. The

can be achieved for the quite reasonable vales v, = 10 mm/s and C = 1, n,/n = 300.

3. DISCUSSION

The comparison of the modeling curves in [3] (a detailed analysis of the model presented in
[3] with some additional considerations can be found in [21]) and in this paper reveals their similar
shape and qualitative agreement with experimental grow curves. It ought to be noted that the
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presented modeling curves are universal for microvessels, i.e. can simulate the thrombus growth
either in arterioles or in venules in the same way as in [3]. The experimental grow cures presented
in [17] for both types of microvessels have a plateau as a main specific feature and both models
under consideration correspond to this circumstance. The analysis of experimental reports that
describe the influence of different factors on thrombus formation confirms that the most important
of them can be taken into account in the present theoretical framework as well as in [3]. The
flexibility of the models enables one to extent both of them to the description of any scenario of
experimental thrombosis. But the phenomenological models developed in [3] and in this paper
differ essentially in the initial assumptions.

First of all, the assumption of a certain dependence of platelet’s activation time on the distance
from the damaged wall site revealed in [3] in explicit form is absent in the model in this paper.
Secondly, the platelet concentration in the blood flow here is considered to be constant, but in [3]
the experimentally confirmed realistic profile of platelet distribution in the blood flow served as a
key stone of the model. Finally, the choice of the phenomenological function for the dependence
of the blood flow velocity on the thrombus size made in [3] on the basis of the continuity equation
and biological considerations is changed here for the explicit calculation of this dependence on
the basis of viscous fluid dynamics with subsequent introduction of the probability function
describing the processes of platelet attachment and detachment. It means that in the presented
model this property gets its explanation in pure physics but not biological terms.

Both models under consideration are typical phenomenological theories of thrombus
development that are based on fundamental reliable experimental results. Their phenomenological
parameters are determined by the comparison with experimental data. Both models have the
stochastic character, but they differ also in the way of construction. For example, Eq. (12) in [3]
looks like dynamical equation which describes “slow” process in thrombus growth. Its stochastic
character is hidden by the rough time scale and is revealed by an implicit averaging of “quick”
processes over the “rough” time length dz. On the contrary the stochastic character of the present
model is revealed in explicit way by the introduction of the probability function (4). But at the
same time both models are based on Bogolubov’s hierarchy of time scales and in this sense are
linked genetically.

It is easy to see that the differences of the phenomenological models under consideration
correspond to different experimental pictures of thrombus formation. The model developed in [3]
corresponds to a case of a friable thrombus which is to some extent transparent for the moving
platelets: platelets can penetrate inside the gradually growing thrombus and can be activated there.
In this case the assumptions concerning the activation time and the platelet distribution in the
blood flow are important. The model developed in this paper corresponds to a case of a solid
thrombus which increasing in size shifts the border layer of blood and thus remains practically in
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the same conditions concerning platelet distribution and activation time. Both cases of thrombus
formation are possible in experiment and the developed phenomenological models demonstrate
the insensitivity of the resulting macroscopic picture on the microscopic details of the process.
This insensitivity also testifies to the possibility of neglecting many of the described in [13] specific
biological details of thrombus formation in a process of creating phenomenological models.

The meaning of such simple phenomenological models is brightly expressed in Philip W.
Anderson’s Nobel prize address: ”The art of model-building is the exclusion of real but irrelevant
parts of the problem and entails hazards for the builder and the reader. The builder may leave out
something genuinely relevant and the reader, armed with too sophisticated an experimental probe,
may take literally a schematized model. Very often such a simplified model throws more light on
the real working of nature...” [22].
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®EHOMEHOJIOTMYECKUE MATEMATUYECKWUE
MOOENN POCTA TPOMBOB B XUBbIX OPTAHU3MAX

KonapatbeB AnekcaHap Cepreesn,
Jlanues AnekcaHap BuktopoBuy,
Mwnxannosa VpnHa AHaTonbeBHa

AHHoOTauus

Ha ocHoBe ucnonb3oBaHusl nepapxum BpemeHHbIX Maclutabos H.H. BorontoGosa cTpouTcs
¢heHOMeHomnornyeckas MoZenb npolecca nasep-MHayLupoBaHoro TpomGosa. CtoxacTuyec-
KU xapakTep npoLecca oTpaxaeTcsl B pa3BMBaeMol MOAENV NyTEM SIBHOTO BBEAEHUS (DYHK-
LMK BEPOSTHOCTU. Jlexallme B OCHOBE MOAEINM MOMNOXEHNUsI COOTBETCTBYIOT (hyHAAMEHTarb-
HbIM 3KCMEepPUMEHTarbHbIM pe3yrbTaTtaM OTHOCUTENbHO MPOLEecCoB TpoMGoob6pa3oBaHus,
norny4yeHHbIM B nocrneaHue rofbl. MofenbHble KpMBble NO3BONSAOT A0OUTHCS Ka4eCTBEHHOTO
cornacuvsi Mexzay npeackasaHusiMym Mofernu 1 3KcnepumeHTarnbHbIMU AaHHbIMU. [pounsBoguT-
CS CpaBHeHVe AaHHOM MoZeni ¢ ApYruMu (heHOMEHOMNOTMYECKMM MOAENsiMM MPOLIECCOB PocTa
Tpomba: NokasaHo, YTO MHOTME YepThl ABMNEHNs! MOTYT ObiTb ONUCAHLI B OCHOBHOM B TepMu-
Hax U3NYECKUX, a8 HE BUONOrMYECKUX MOHATUIA..

KnroueBble cnoBa: Mmamemamuyeckasi MOOEsTb, MUKpOCOCyabI, passumue mpOM6a, mpom-
boyumel, uepapxusi BpeMeHHbIX macuwmabos.
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